I have recently returned to model railwaying after a hiatus of over a decade. Since I last modelled, things have changed considerably, with the wide availability of modelling software which allows layouts to be carefully designed in advance — ensuring the design will fit in the space, and that the required track is available.
In terms of track, most modellers now recommend Peco Streamline track for a range of reasons including: it is believed to be better running, the point radii are more suitable for high speed running of large locos, and there is a wider range of pre-made track pieces available. With all that said, I still have a large collection of SeTrack so I decided to design my layout to work with this track to avoid the cost of replacing it with newer Streamline.
Building a basic circle with SeTrack is simple enough, but more complex layouts can become tricky, and so I decided to look on google for some standard geometry layouts to help me. Hornby provide a fairly basic layout themselves which is partially useful for curved points, but I was unable to find any other geometry sites that included a comprehensive set of correct geometries. The best I managed to find was FreeTrackPlans.com which was a very useful starting point, but sadly includes several examples which don’t actually fit very well together.
Below are a large set of track geometries I have designed in AnyRail 5. The AnyRail plan is also available. I should note that there are some examples below that technically don’t fit perfectly — however I have restricted these imperfections to instances where the problem is caused by a straight piece which is fractionally too short. I believe that in a real world model this error is so small that it wont matter, and furthermore that a modeller could easily correct them by using a longer straight piece and cutting it to length. Such very minor mismatches are highlighted in pink at the joint in question. All such imperfections are within the AnyRail tolerances — as their manual says: “Sometimes you can make the track fit by using the play (wiggle room) in the track. While this can be considered cheating, sometimes you don’t even notice that you’re doing just that when laying real track”.
You may notice a lot of level-crossings at the ends of each geometry — these are present to demonstrate that the track at the ends is equal in length and the correct 67mm parallel separation for SeTrack.
Where shown the grid lines illustrate 50cm squares for scale purposes
One last thing to note are the following specifications for HO and OO gauge track standards. The geometries below are for 67mm Hornby/SeTrack, not for 50mm Peco/Streamline
4mm OO Gauge track geometry — Hornby Standard, Peco Setrack, & Bachmann Branchline
- Track gauge: 16.5mm
- Track spacing: 67mm (centre-to-centre)
- Track spacing: 37.5mm (sleeper edge-to-edge)
- Track width: 16.5mm (rail-to-rail)
- Rail heights: code 100
- 1st curve radius: 371mm
- 2nd curve radius: 438mm
- 3rd curve radius: 505mm
- 4th curve radius: 571.5mm
4mm HO Gauge track geometry — Peco Streamline
- Track gauge: 16.5mm
- Track spacing: 50mm (centre-to-centre)
- Track spacing: 20.5mm (sleeper edge-to-edge)
- Track width: 16.5mm (rail-to-rail)
- Rail heights: code 100, 83 or 75
- 1st curve radius: 371mm
- 2nd curve radius: 438mm
- 3rd curve radius: 505mm
- 4th curve radius: 571.5mm
Updates
- 24-Sept-2015: Added 15 new geometries, mostly of stations
- 9-Mar-2017: Added 8 new geometries
Hornby 4 track loop standard dimensions

Standard parallel turnout geometries


Express parallel turnout geometries





Angled turnout geometries



Curved turnout geometries









X-crossing and Scissor-crossing geometries







Y-junction and T-junction geometries






Basic Station geometries






Major station geometries







Curved station geometries



Terminus station with turntable geometries



Turntable geometries

4-way junction geometries









Other geometries
Geometries by request
Please post any requests for other layouts below.
Got some thoughts of your own? Indulge yourself below by commenting! If you would like to subscribe please use the subscribe link on the menu at the top right. You can also share this with your friends by using the social links below. Cheers.
Great site very helpful in giving basic design information, thanks for your efforts. I have a question ?
I’m trying to visualise if it is possible to have two circles of track side by side joined with 4 curved points so the circles can be run separately or switched with the points to create a figure of 8. In other words replacing an X crossing with points. Thanks for any guidance.
It’s certainly possible with a single track loop. A double track loop would be more complicated. I’ve added an image of a single track figure-8 / double loop layout
Thanks for these. I would suggest moving the curved crossover to its own diagram.
Is there a geometry that allows a 2nd radius curve in a 3rd or 4th radius circle? Something to allow points with the curve on a 3rd radius circle.
I’m not sure which “curved crossover” you are referring to.
I’m also not quite certain what you mean by a 2nd radius curve in a 3rd or 4th radius circle? So here are several possible answer
(1) The standard hornby circle shows a 2nd radius to 3rd radius curved turnout geometry.
(2) I’m not aware of any way to do a 3rd to 4th radius on a curve without using flexitrack. With flexitrack it can be done.
(3) If you mean is it possible to use 2nd radius curves to enable space to fit an inward turning point into a 3rd or 4th radius turn then yes it is — you could just modify the standard Hornby loop to do this, or it is possible to do it in a more compact way.
I’ve added 2 extra geometries to show how to do (2) with flexitrack and (3) with a 3rd radius, altho it isn’t an absolutely perfect fit it will be close enough real world.
We are building a child friendly layout to raise funds for a local children’s charity from largely donated components, so your information was particularly useful for designing the layout using setrack curves.
That’s great. Thanks for your feedback. We always welcome ‘advertising’ for anything charitable, so feel free to let us know more about it.
Cheers
Jon, thanks for your work, shame I only discovered after starting to lay down my track. Your work, however, has been useful in correcting my track laying mistakes.
Thanks Jon, This has been really helpful… I’m now going to side down and digest much of this and then try in AnyRail to create my own solutions based on the ones you’ve provided here! 🙂
What size is the full 4 track layout please useing the 4th radius ?
The radius of 4th radius is 572mm — so the total diameter will be 1144mm (1.15m or 45 inches). That is to the track centre, so you’d need to add on a small amount for the physical space required. I’d suggest adding on half a track width at either side, and half a track spacing at either side. That gives a grand total of 1228mm of space needed (1.23m or 48 1⁄3 inches). I’d want a little margin for error on top of that myself.
Hi,
Being a novice at this can you confirm the appx overall size of the board i.,e. 1.3m x 1.3m etc.for the Hornby standard 4 loop track.
Thanks a lot.
Bob
The grid squares are 50cm x 50cm so the standard 4 track loop is approx 1.4m x 2m.
To be more precise I measured it in AnyRail — with reasonable track clearance it could be fitted as shown onto a board 1.25m x 1.9m.
Super item, Jon. Sorry if I’ve missed it here, but when you mention track spacing, e.g H0 as 50mm, how is that space measured? Is it the space between the edges of the sleepers of two tracks or say, from track centre to track centre?
Track centre to centre.
Thank you for doing this, it has helped me realise what can be achieved.